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Equilibration data on 2-chloro-4-methyltetrahydropyran 
show that an axial chlorine is stabilized by 2.2 kcal/mol when 
compared with a similarly placed equatorial chlorine." 
Chlorocyclohexane, on the other hand, is more stable with the 
chlorine equatorial, and has AG0 = 0.5 kcal/mol.12 From these 
data, the anomeric effect can be estimated to be 2.2 + 0.5 = 
2.7 kcal/mol. CNDO calculations2*1 on chloromethyl methyl 
ether indicate that the gauche form is more stable than the anti 
form by ~ 2 kcal/mol and that the barrier to internal rotation 
about the oxygen-methylene bond is slightly larger than 2 
kcal/mol.13 Thus, both experimental and theoretical data show 
that the magnitude of the anomeric effect in a-chloro ethers 
has a value of 2-3 kcal/mol. 
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Pyrimidine S-Nucleoside Photorearrangement. 
New Access to Pseudonucleosides 

Sir: 

Because of their biological importance, considerable effort 
has been directed toward the synthesis of pseudonucleosides 
(C-nucleosides)1 during the past several years.2 In the con­
ventional preparation of these substances the crucial step is the 
introduction, with appropriate stereochemical control, of a 
functionalized carbon unit at the anomeric center of a suitably 
derivatized pentose. This newly introduced substituent serves 
to elaborate the nitrogenous heterocyclic portion of the mol­
ecule.2 However, direct coupling of the aglycone with the 
carbohydrate moiety is possible in a few cases.3 Since such 
single-step synthesis—even with moderate yield—might be 
preferred, we have devised in the S-nucleoside series a new 
rearrangement prone to generalization, which ends up in the 
formation of a pseudonucleoside. 

From our recent observation that 4-benzylthiopyrimidin-
2-ones undergo a photoreaction leading to 5-benzylpyrimi-
din-2-ones,4 we were prompted to investigate the photo­
chemistry of some 4-glycosylthiopyrimidines. We expected to 
obtain by photorearrangement their 5-glycosyl isomer. 

Interest in a pyrimidine amenable to further chemical 
transformations which may provide a variety of useful py­
rimidine derivatives led us to select 4-mercapto-2-methyl-
thiopyrimidine (1) as a substrate. Its S-benzyl derivative 2a 
(oil)5 was prepared and exposed to light6 resulting in the for­
mation of 1 and 3a (mp 170-172 0C) in 30 and 60% yield, re-
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spectively. Compound 3a whose structure was evident from 
the analytical and spectral data was methylated (CH3I, ace­
tone, K2CO3) to give 5-benzyl-2,4-dimethylthiopyrimidine (4a, 
oil).5 Oxidation of the latter by H2O2 in acetic acid followed 
by acid hydrolysis of the resulting 2,4-dimethylsulfonylpyri-
midine gave 5-benzyluracil (5a).7 

The thioglycoside 2b (mp 81-82 0C)8 was prepared by 
treating 1 with either 1,2,3,5-tetra-O-acetyl-D-ribofuranose 
(BF3-Et2O, dichloroethane, O 0C) or 2,3,5-tri-O-acetyI-D-
ribofuranosyl bromide (acetone, K2CO3). The /3 configuration 
of this S-nucleoside was anticipated because of its method of 
synthesis.9 Compound 2a and 2b displayed a closely related 
photochemical behavior. Irradiation6 of 2b gave a mixture 
which, after methylation, was separated by silica gel column 
chromatography affording 2,4-dimethylthiopyrimidine (6) and 
4b (oil, 15% yield).8 Compound 4b is a pseudonucleoside as 
shown by comparison of the NMR spectra of 2b and 4b. In the 
spectrum of 4b the H-6 signal appears as a singlet at 8.31 ppm, 
whereas the H-I"0 signal is observed at higher field as expected 
for a C-nucleoside. Comparison of the signals exhibited by the 
ribose carbons in the ' 3C NMR spectra of 2b and 4b shows only 
minor differences for C-2', C-3', C-4', and C-5'. However, the 
signal due to C-T is found at 78.01 ppm in 4b instead of 84.10 
ppm in 2b. This upfield shift is compatible with the replace­
ment of a C-S bond by a C-C bond at C-I'. 

NMR spectroscopy and TLC indicated that compound 4b 
was anomerically pure; the configuration at C-I' was assigned 
on the basis of the observed difference of the chemical shift 
values between the methyl resonances in the isopropylidene 
derivative 4d." Deacetylation (NaOCH3/CH3OH) of 4b 
afforded a C-nucleoside which was treated with 2,2-di-
methoxypropane to yield 4d (oil).8 For this compound AOCH3 

was 0.264 ppm suggesting the /3 configuration. Hence, there 
is retention of chirality at C-I' during the photorearrangement; 
as previously demonstrated in the case of 4-benzylthiopyrim-
idin-2-ones,4 it might be inferred that this rearrangement was 
also /n/ramolecular. 

Confirmation of structure 4b was achieved by transforma­
tion of this substance into /3-pseudouridine (5b). Thus, over­
night oxidation of 4b with w-chloroperbenzoic acid in CH2Cl2 

gave the corresponding 2,4-dimethylsulfonyl derivative which 
upon treatment in water at 90 0C followed by deacetylation 
(NaOCH3/CH3OH) afforded /3-pseudouridine.12 

The 4-(2',3',4',6'-tetra-0-acetyl-/3-D-glucopyranosyl)-
thio-2-methylthiopyrimidine (2c, mp 147-149 0C)13 was 
quantitatively prepared by treating 1 with 2,3,4,6-tetra-O-
acetylglucopyranosyl bromide (acetone, K2CO3). The coupling 
constant JH-\',H-2' = 10 Hz indicates that this new glycosyl-
thiopyrimidine has the /3 configuration. It was irradiated6 to 
give a mixture of photoproducts which after methylation 
(CH3I, acetone, K2CO3) afforded the three pyrimidine de­
rivatives 6,4c, (oil, yield 8%),13 and 7 (mp 162-164 0C, yield 
7%).13 

Structures 4c and 7 are based on spectral evidences. The 
presence of a thiocarbonyl in 7 is confirmed by UV. Its NMR 
spectrum displays an AB pattern (7 = 6 Hz) attributed to H-5 
and H-6; the lowest field signal at 7.95 ppm is due to the ano-
meric H-I'. The deshielding of this signal results from the 
anisotropy of the thiocarbonyl;14 consequently the glycosyl 
moiety in 7 is at N-3. The value of the coupling constant 
JH-\',H-T = 9.7 Hz suggests that this nucleoside has retained 
the /3 configuration of the starting material. 

Compound 4c is a 2,4-dimethylthiopyrimidine with a gly­
cosyl residue at C-5. In its NMR spectrum the H-6 signal 
appears as a singlet at 8.46 ppm and the H-I' signal is part of 
the multiplet due to H-2', H-3', and H-4'. 

We have firmly established that thionueoside 2a and 2c 
undergo a photorearrangement to provide stereospecifically 

the corresponding C-5 pseudonucleosides. These results 
demonstrate the potential utility of this reaction with pentose 
derivatives. In the case of 2c migration of the hexopyranosyl 
residue occurred unselectively toward C-5 as well as N-3 in 
poor yield. The extension of this rearrangement to other sys­
tems through modification of the heterocyclic and carbohy­
drate moieties is underway in this laboratory. 
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A Stereospecific Total Synthesis of (i)-Biotin1 

Sir: 

Biotin, a member of the B vitamin complex, plays an es­
sential nutritional role in various CO2 fixation reactions.2 

Recognition of biotin's important function as a growth factor 
in poultry, coupled with its relative unavailability from natural 
sources, spurred interest in synthetic approaches, and a ste­
reoselective commercial synthesis has been developed.3 We 
now wish to disclose a stereospecific total synthesis of (±)-
biotin which differs fundamentally from previous approach­
es.4 

HtT^ NH 
H « 4 — i - H 

Biotin, R = (CHj)4COOH 
3, R = H 
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